Mammalian Hippo signalling: a kinase network regulated by protein-protein interactions.

نویسنده

  • Alexander Hergovich
چکیده

The Hippo signal transduction cascade controls cell growth, proliferation and death, all of which are frequently deregulated in tumour cells. Since initial studies in Drosophila melanogaster were instrumental in defining Hippo signalling, the machinery was named after the central Ste20-like kinase Hippo. Moreover, given that loss of Hippo signalling components Hippo, Warts, and Mats resulted in uncontrolled tissue overgrowth, Hippo signalling was defined as a tumour-suppressor cascade. Significantly, all of the core factors of Hippo signalling have mammalian orthologues that functionally compensate for loss of their counterparts in Drosophila. Furthermore, studies in Drosophila and mammalian cell systems showed that Hippo signalling represents a kinase cascade that is tightly regulated by PPIs (protein-protein interactions). Several Hippo signalling molecules contain SARAH (Salvador/RASSF1A/Hippo) domains that mediate specific PPIs, thereby influencing the activities of MST1/2 (mammalian Ste20-like serine/threonine kinase 1/2) kinases, the human Hippo orthologues. Moreover, WW domains are present in several Hippo factors, and these domains also serve as interaction surfaces for regulatory PPIs in Hippo signalling. Finally, the kinase activities of LATS1/2 (large tumour-suppressor kinase 1/2), the human counterparts of Warts, are controlled by binding to hMOB1 (human Mps one binder protein 1), the human Mats. Therefore Hippo signalling is regulated by PPIs on several levels. In the present paper, I review the current understanding of how these regulatory PPIs are regulated and contribute to the functionality of Hippo signalling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of Hippo signalling by p38 signalling

The Hippo signalling pathway has a crucial role in growth control during development, and its dysregulation contributes to tumorigenesis. Recent studies uncover multiple upstream regulatory inputs into Hippo signalling, which affects phosphorylation of the transcriptional coactivator Yki/YAP/TAZ by Wts/Lats. Here we identify the p38 mitogen-activated protein kinase (MAPK) pathway as a new upstr...

متن کامل

Cell Cycle Regulated Interaction of a Yeast Hippo Kinase and Its Activator MO25/Hym1

Hippo pathways are ancient signaling systems that contribute to cell growth and proliferation in a wide diversity of eukaryotes, and have emerged as a conserved regulator of organ size control in metazoans. In budding yeast, a Hippo signaling pathway called the Regulation of Ace2 and Morphogenesis (RAM) network promotes polarized cell growth and the final event in the separation of mother and d...

متن کامل

Protein interaction network of the mammalian Hippo pathway reveals mechanisms of kinase-phosphatase interactions.

The Hippo pathway regulates organ size and tissue homeostasis in response to multiple stimuli, including cell density and mechanotransduction. Pharmacological inhibition of phosphatases can also stimulate Hippo signaling in cell culture. We defined the Hippo protein-protein interaction network with and without inhibition of serine and threonine phosphatases by okadaic acid. We identified 749 pr...

متن کامل

Unveiling Hidden Dynamics of Hippo Signalling: A Systems Analysis

The Hippo signalling pathway has recently emerged as an important regulator of cell apoptosis and proliferation with significant implications in human diseases. In mammals, the pathway contains the core kinases MST1/2, which phosphorylate and activate LATS1/2 kinases. The pro-apoptotic function of the MST/LATS signalling axis was previously linked to the Akt and ERK MAPK pathways, demonstrating...

متن کامل

Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway

Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 40 1  شماره 

صفحات  -

تاریخ انتشار 2012